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One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic
interactions. Computational time in conventional molecular simulation methods scaled (M,
whereN is the number of atoms. With the emergence of new simulations methodologies, such as the
cell multipole method CMM), and massively parallel supercomputers, simulations of 10-million
atoms or more have been performed. In this work, the optimal hierarchical cell level and the
algorithm for Taylor expansion were recommended for fast and efficient molecular dynamics
simulations of three-dimensional(3D) systems. CMM was then extended to treat
guasi-two-dimensional2D) systems, which is very important for condensed matter physics
problems. In addition, CMM was applied to grand canonical ensemble Monte Carlo simulations for
both 3D and 2D systems. Under the optimal conditions, our results show that computational time is
approximately linear withN for large systems, average error in total potential energy is about 0.05%
for 3D and 0.32% for 2D systems, and the RMS force error is 0.27% for 3D and 0.43% for 2D
systems when compared with the Ewald summation.2@3 American Institute of Physics.
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I. INTRODUCTION parallel supercomputers due to its hierarchical tree structure.
In particular, its multipole-based and hierarchical cell struc-
The fast and accurate treatment of long-range Coulomyres are well suited to calculating long-range interactions in
bic interactions for large systems is one of the most challengrarge systems. The cost is reduced for®(N?) to
ing tasks in computer simulations of charged particles. For "i‘)(N logN). With growing interest in surface and interfacial
three-dimensional3D) periodic system, the Ewald summa- systems, it is desirable to apply CMM to quasi-two-

tion method(EW3D) has been widely used to handle long- imensional(2D) systems, where periodicity exists in onl
range electrostatic interactions between charged particleg. y ' P y y

However, the Ewald summation method is computationall)}WO d|m<_an5|ons. ] ) ]
very expensive since its complexity I©(N* in an In this work, the optimal hierarchical cdk.g., level 2 or

N-particle system. A common approach is to truncate thed) and the algorithm for Taylor expanside.g., complex or
interactions at a certain cutoff distance. This reduces opergimple downwartiwere recommended for fast and efficient
tion count toO(N), but significantly sacrifices accuracy, par- molecular dynamic$MD) simulations of 3D systems. CMM
ticularly for long-range Coulombic interactiohsRecently, was then extended to MD simulations for quasi-2D systems
much effort has been devoted to improving the efficiency ofand grand canonical ensemble Monte C4BCMC) simu-

the Ewald summation method and developing alternativgations for both 3D and quasi-2D systems. These methods
methods for large systems, such as the particle—particle aRggre tested on pure, binary, and ternary systems. This paper

. 4’5 .
par:LCIz_(;nNT[\SAh J_Tg?#';';iﬂ ;r(lde,t\?e cell m“';'rPf?'et is organized as follows. In the next section we describe the
method( )- 0 an are more €ticient 'y sic ideas of CMM and the reduced cell multipole method

than the Ewald summation. CMM is well suited to massively(RCMM) for periodic systems in MD simulations, and the

extension of CMM to confined systems and to GCMC simu-

dAuthor to whom correspondence should be addressed. Electronic mai|'a,[ionS In the third section, various simulation results of pure
sjiang@u.washington.edu ’ !
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liquids or mixtyres(i.e., water, methane, and dend_rin)eirs_ Er= &0+ &My + §f§rar5, (3)
bulk and confined systems by MD and GCMC simulations

are given. Conclusions are presented in the final section. where&( is the summation oith order of Taylor expansion
coefficients from multipole moments,, is the distance be-
tween atom and the center of the cell containing atornis
shown in Fig. 1, for one of eighty gray cdih three dimen-
A. Multipole approximation siong, the simple downward algorithm involved Taylor ex-
pansion coefficients), which are calculated by directly

The key idea of CMM is that by dividing a system into . A .
cubic cells and using multipoleée., charges, dipoles, and summing all the contributions from far-field cells marked as
f ' ' 1 and 2. However, as we can see in Fig. 1, eight gray cells,

qguadrupolesto represent these cells, a large number of at=~ ",
oms that lead t(N?) computations for calculating long- which come from the same parent cell, have exactly the same

range interactions in the far-field are replaced by these mul;—ji'csi;r:tniiﬁoi’ f?)t:tczrcf:irlzza cetlrl]sé 16022?5(’;{; z;l;cet;]nea'fll_\;elgr
tiple moments:” This replacement reduces computationalex ansion around the centergof each gray cell is the so—c):/alled
time to O(NlogN). In order to maintain accuracy, nearby b gray

nonbonded interactions are computed explicitly while distanf‘:omplex downward algorithm. In this algorithm, Taylor ex-

interactions are evaluated by multipoles and Taylor expanpansion is first established around the center of the parent

. cell from distant cells 2. Taylor expansion around the center
stons. f each child cell consists of two contributions—by Taylor
CMM is used for any inverse power-law interaction Ox nsion around th nter of h child cell dirytl )f/r m
potentiaf asV=Ei>jqiqj/rip-, wherep=1 for Coulombic, expansion arou € center of each ¢ ce ecty ro
_ . . _ distant cells 1 and by shifting Taylor expansion coefficients
p=6 for Lennard-Jone$LJ) dispersive, ancp=12 for LJ d the center of the parent center obtained from distant
repulsive interactions. CMM can be divided into four parts. aroun ' parent center obtained Ir Istan

(i) Cell decompositionThe simulation system is decom- cellljs;atiZO:]nS'the center of each child cell using the following
posed into a hierarchy of cells like a tree structure. The rootd ’
of the tree is the original system that is defined as level 0 g0 — 0y (00 (Dpr g £2) prpr
while the leaf of the tree is at the deepest level. The effect of 9@ >t =52 = 52« 2afa p

Il. METHODOLOGY

each cell will be represented by multipole expansions. N Y-y (4)
(i) Multipole expansionThe multipole moments for all grayar Sha T S2a n m02af
the cells at the deepest level are first determined by &3ing gggy’aﬁz §<12B+ 5(223’
Z:E ai (1  Wwhere&; andé, are the Taylor coefficients from distant cells
i

1 and 2, respectively.’ is the distance between the centers
of the parent and child cells.
MC,:E PGl iy (1b) (iv) Near-field and far-field computationSor a given
! leaf cell, it has 27 neighbor cells including itself and the
1 interactions in this near-field are computed explicitly in
Qup=5 > GilP(P+2)T al 15— PSap El, (10 terms ofEnea 1/23;3,i(q;q; /). The remaining far-field
interactionsk;,, are evaluated by multipole moment expan-
whereZ, w,, Q,p are the charge, dipole, and quadrupole.sjons.
r; is the distance between atonand the center of the cell RCMM is a relatively simple way of extending CMM to
containing atom. « and 8 are thex,y,zcomponents in the periodic systems. The most difficult problem with infinite
Cartesian system. Then, the multipoles at the higher level argrystals is to compute Coulombic interactionsy;
calculated by combining the corresponding multipole mo-:;i’qj/rij, which are conditionally Convergeﬁﬂ'he key
ments of eight child cells at the lower level. This processidea of RCMM is that the original unit ce{containing 100
starts from the deepest level, and then moves upward to ther 10 million atoms is replaced by a reduced cell containing
root level (level 0. Thus, for a given atom, the potential a3 small number of randomly positioned fictitious charges
energy from the far-field is evaluated by multipole moment(e.g., 35 in this cagewhich can reproduce up to 5th muilti-

expansions: pole moments of the unit cell. We solve 35 equatipis.
Z w,R, QuR,R (2)] from the known multipolegup to 5th multipole mo-
Eror=5p + RCFI’*Z Cspfi‘» Y (20 ments of the unit cell for 35 fictitious charges. The differ-

ence between the reduced cell and the original cell is at the
whereR is the distance between atanand the center of the kth (k=5) multipole moments, which fall off very fast as
cell in the far-field. 1/€*1 In RCMM, Coulombic interactions are divided into

(ii ) Far-field multipole Taylor expansiorsince the mul-  two terms® (a) the potential generated by charges in the

tipole moments in the far-field are all the same for each atonoriginal unit cell and 26 nearest images neighbor cells, and
in a given leaf cell, it is reasonable to expand the multipole(b) the potential due to the fictitious charges in the remaining
moments in terms of a series of Taylor coefficients from alloc—27 cells. The first ternta) is calculated with CMM, and
distant cells in the far-field to the center of the given cellthe second ternfb) involves the Ewald summation over fic-
instead of to each atom. This saves computational timetitious atom< For short-range van der Waal¢DW) inter-
Thus, Eq.(2) is changed to actions, RCMM is not needed.
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treated by the CMM method to calculate LJ short-range and
2 2 2 2 Columbic long-range interactions. The distant cells with 35
2\ fictitious charges in the RCMM part are treated by the Heyes
AR REE method to handle long-range interactions. In the Heyes
2 BNp|[ 11! 2 method, the surface lattice is constructed from layers of unit
T T T cells infinite in thex andy directions. The 2D real-space
) A ) lattice vectorn is denoted asi=(n,L,n,L,L) with n,,n,
L1 ¢! integers and reciprocal lattice vectkre=27n/L. The real-
L1 fr]1 space part of the potential energy is shown to be
2 1jrjrlrfirft 2 N N o
1 , erfo( n|r;;+n
Ver3 3,3 3 aq g
2 2 2 2 2 1=11=1In=0] ]
where the adjustable parametgris an arbitrary inverse-

FIG. 1. For the simple and complex downward, Taylor expansion is establ-en%th param?ter; the el (erfc(x) : (2/\/;),
lished around the center of each child oelashed lingand of the parent X Jx exp(~t9)dt) is complementary error function, which
cell (solid ling) from distant cells 2, respectively. For the complex down- falls to O with increasing. The value ofy determines rela-

ward, Taylor expansion around the center of each child cell is further estabn've emphasis given to the real- and reciprocal-space terms.

lished based on the coefficients of the Taylor expansion around the center ?]t . .

the parent cell. 7 increases, the real-space terms become less important
and the reciprocal-space term became more important due to

the erfdx) function. The prime indicates that the case]

must be omitted fon=0 since a particle cannot interact with

itself. The reciprocal-space contribution to be potential en-
The RCMM method has been used to evaluate potentiadrgy is shown to be

energy and force in bulk systems where periodic boundary NN
conditions are used in three dimensions. However, one often _ 17 S
encounters systems that are finite in one of the dimensions, — "°P% 2 A & &
such as adsorption and diffusion in slit pores. It is desirable . .
to have a fast and efficient method to treat quasi-2D system¥\fherer.Zij Is theZ component of; . The in-plane area of the
One of the solutions is to use the EW3D for quasi-2D Sys_5|mulat|on cell Ais equal toA=[L,xL
tems by introducing a large vacuum gap on the top of the=, .,

slab. The height of the vacuum needs to be adjusted so that it K K
av0|d_s artificial effects in tr_ns direction. The method is com- e(Krzii)erfc<—+rzij77 +e(|<rzij)erfc( e 77)
putationally very slow. Various other approaches have been 27y 27
developed to deal with qausi-2D systems. Paagapted the N K '
Ewald transformation to a laminar and semi-infinite system.

Heyes and co-workers derived surface formulas for point— @)
charge and point—dipot&*®interactions to calculate poten- e (rzijm?

tial energy and force in molecular simulations. These twoFKoz—Z[ rzijerf(rijn)+ —} . (8
methods are found to be most accurate, but the direct use of 77\/;

these Ewalds 2D formulas is known to be computationall ; ot : ;
very expensivé® Lekned” developed a simple surface po_yThe existence of a distinct nonzero term with=0 is one of

s X . ! the features of the surface formula that distinguishes it from
tential formula cast entirely as a Fourier series. However, thig, corresponding bulk Ewald expressi§rior which the
method was devised originally for square systems. AlthOUQIE_omparable term is equal to zero for an overall charge neu-

the scheme has been extended to rectangular systems, {5 system. The self-energy term should be subtracted from
applicability is still limited?>? Hautman and Kleitf (HK) the total potential energy as for the bulk case,
developed a novel expansion procedure, in which the 1/

B. Extension to 2D systems

EK: q;q;FkcogK-rj;), (6)

yl:

interaction was decomposed into the in-plane and out-of- o 5

plane components in real space. But the HK method was Vse= — \/—— 2 gi- 9)
only applied for the system where the distribution of charge it

ions in thez direction is smalf? The final result for Coulombic interactions in quasi-2D sys-

In this work, a generalized quasi-2D CMKCMM2D)  tem is
method was developed by combining the Heyes method with VeV Vo Vv (10)
RCMM for confined systems. The methodology of CMM real™ ¥ reciprocal ¥ self-
and RCMM described in the previous section still can be  Recently, Kawatat al?® used a Fourier integral for the
applied to quasi-2D system. But, the periodic boundary coneomplimentary error function in Eq7) to improve compu-
dition is eliminated in thez direction, and the conventional tational efficiency. Minay et al?® designed a new formalism
EW3D summation used in RCMM to deal with fictitious in the reciprocal space to treat long-range interactions in
charges was replaced by the Heyes method. For a quasi-2@uasi-2D systems. This formalism can be implemented in the
system, the original unit cell land its 26 neighbor cells arestandard plane-waved density function theory, Ewald, and
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the smooth particle-mesh Ewald method for surface calculanates and the cell number for the inserted molecule are la-
tions. In order to check our CMM2D simulation results, we beled. The new trial configuration is updated in the original
applied the EW3D technique to quasi-2D systems by addingimulation box and copied to the image cells. It should be
a large vacuum space on the top of the slab. The inclusion giointed out that our CMM update cost is computationally
the vacuum space into the unit cell was done to avoid arheap, i.e.O(1) for each trial in GCMC simulations. From
artificial influence from periodic images in thez the hierarchical tree structure, it is easy to identify near, far
direction!®=2! Spohf! compared the results from this ap- ande~—27 reduced cells for the labeled cell. Finally, poten-
proach with those from the two-dimensional Ewald summadtial energy between this molecule in the labeled cell and the
tion (eW2D) method which was first introduced by Patry updated system including the inserted molecule and its im-
and later independently derived by Heyes, Barber, andge cells is calculated using the methods discussed above.
Clarke® It was concluded that results for this approach con-The same procedure is used for deletion and movement at-
verged to those of EW2D when the vacuum height was largéeempts. The GCMC-CMM program was tested for a binary
in the z direction. By increasing the height of the vacuum system including dendrimer and water. Recently, Jorge and
space in the direction, the slab with the vacuum space on itsSeatoR’ studied long-range interactions in GCMC simula-
top can be modeled as a strict slab system. The real-spatiens of water adsorption in a slit pore using various 2D
lattice sum decreases quickly becaus*,eijﬂ n| falls off very ~ Ewald sum methods, except for CMM.

fast in thez direction. The reciprocal vectdt =2=n/L also

leads to a decrease in both exy{%47?) and 47?/K? terms  [ll. RESULTS AND DISCUSSION

due to the large vacuum in ttedirection. Thus, interactions

- . . o . In this work, applications of the CMM method to MD
between the original simulation box and its image cells in the : ) . )
N . : and GCMC simulations of bulk and confined systems will be
z direction with large vacuum height for a bulk system were

small. Potential energy will converge within a range of thedlscussed. The computational speed and accuracy of the

vacuum height. Jorge and Sedibtested a quasi-2D system CMM method for evaluating potential energy and force were

with water molecules by using full 2D Ewald sum and 3D F:ompared with those from the Ewald summation, minimum

Ewald sum methods with large empty spaces inZlu#rec- Image (M.I)’ and Masswely Earallel Slmulat!ofl\/IPS|m).
. . : MPSim' is a parallel simulation program with the CMM
tion. Their results show that the potential energy form the 3D ,
: ethod developed by Professor Goddard llI's group at the
Ewald sum converges to the value obtained from 2D Ewal P . .
alifornia Institute of Technology. The Ewald summation

sum with errors below 1%. was also available from MPSim. Timing reported for various
methods is based on a 400 MHz Silicon Graphics 02 R12K
workstation. All structures were built using Cerfisom Ac-

In grand canonical ensemble MGCMC) simulations, ~ Celrys, Inc.
chemical potenti_al is fixed while t_he number of particles o mp simulations of bulk systems
fluctuates. The simulations are carried out at congtai T
(chemical potential, volume, and temperajur;n GCMC Tests were first performed on the model of water. The LJ
simulations, there are three different types of trids: a  and charge parameters for water arg=2.886 A, e./k
molecule is moved(b) a molecule is destroyed, and) a = 22.144 K,q4=0.41e, 05=3.50 A, €o/k=30.196 K, and
molecule is created at a random position. Each simulatio§lo=—0.82 from the universal force fieldUFF). The sys-
step consists of one of the three attempts described abov€m consists of 1664 water molecules with a dimension of 36
For a move attempt, the probability of a movement attempl&X% Ax36 A. Results are listed in Table I. Tables Il and

C. CMM in GCMC simulations

being accepted is 1l prg;ent the.energy decompositions for VDW and Cou-
acc . lombic interactions.
Pove= Min[1,exp(— BAU(T))]. (1D Regarding the level of CMM, as compared with level 1,

The probability of the creation attempt being accepted is Ccomputational time was reduced by6.0 times at level 2 for
both the simple and complex downward algorithms, and by

Péreatior= Min[L,exp — BAU(r)) + B;—In(N;+ 1)]. 8.8 and 12 times at level 3 for the simple and complex down-
12 ward algorithms, respectively. Most computational time at
The probability of deletion being accepted is level 1 was spent in calculating the near-field interactions the

. amount to 8 27x 624 =84,105,216 pairwise interactions.
P deieie=Min[ 1,ex(— BAU(r)) +In N;—B;]. (13 However, at levels 2 and 3, the total near-field pairwise
Here, B=1/kgT, AU(r) is the change in confirmation en- interactions dramatically decreased to >GA7X 78
ergy; N; is the number of molecule¥ is the volume; and®  =10,513,152 and 52227x 10°=1,382,400, respectively.
is defined as Computational time in the CMM program is the sum of three
terms: time for(a) near-field, (b) far-field, and(c) the re-
Bi=puit+nV, (14 maining «—27 cell interactions. The first terita) depends
whereu; is the configurational chemical potential of compo- on the average number of atomdsn the deepest cell and is
nenti. proportional toO(N?). The more atoms are in the deepest
For creation attempt, when a new molecule is inserted taell, the more computational time it will take. Computational
the original simulation box, it is assigned to a specific celltime for the second ternfb) is approximately linear with
based on its coordinates. Then, both the molecule coordi©(K), whereK is the number of far cells. The last ter(T)
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TABLE I. Computation of energy, RMS force, and CUP time for 1664 water molecules in the bulk from the
Ewald summation, MPSim, minimum image, and our CMM3D program.

Tayor Energy RMS® Time
Method expansion Level MmP n°¢ (kcal/mol)) (kcal/mol A) (s)
Ewald (—13035.37 (5.166 668
Min. image —619.07 0.648 48
MPSim —50.58 0.013 73
CMM Simplé 1 8 624 —58.76 —0.007 210

CompleR

MPSim —31.40 0.034 18
CMM Simplé 2 64 78 —36.45 0.008 34
CMM CompleR —44.76 0.015 30
MPSim —4.28 0.032 9
CMM Simplé 3 512 9.8 3.33 0.030 24
CMM CompleR —4.63 0.027 17

aSimple or complex downward algorithm in the Taylor expansion described in Sec. Il and no complex down-
ward for level 1.

PNumber of cellsM in the deepest level.

“Average number of atomsin the leaf cell.

The potential energy is given for the Ewald summation in parentheses. Only the differences are given for other
methods.

RMS= |3, f7/3n— 3.

is constant at each level for a given system. Thus, there exnonomer units. Additional layers of monomer units can at-
ists an optimal level at which a large number of interactiongach to the nitrogen atoms of monomers such that the den-
in the near-field will be compensated by relatively fewer in-drimer grows like a tre€in contrast to a single chain poly-
teractions in the far-field. Compared with the Ewald summa-mer. PAMAMs of generation 3G-3), 4, 5, and 6 have 382,
tion method, an error in total energy at level 3 for CMM is 814, 1678, and 3406 atoms, respectively. Nonbond interac-
less than 0.035%, and an error in the root mean squargons come from both inter- and intramolecular contributions,
(RMS) force is about 0.52%, where the percentage errors foexcluding 1-2 and 1-3 interactions. PAMAM dendrimers
energy and RMS are the difference between calculated vailvere built using POLYGRAF from Professor William A.
ues from the CMM and Ewald methods divided by that fromGoddard Il at the California Institute of Technology. The
the Ewald method. UFF force field was used to obtain LJ parameters, and the
Regarding the simple and complex downward algo-charge equilibrationlQEg method was applied to assign
rithms in Taylor expansion, the latter is faster than the simpleharge to each atom in PAMAM dendrimers. For all LJ
downward while maintaining the same order of errors in po-cross-term parameters, the geometric mean combining rule
tential energy and RMS force. In the complex downwardwas used, namely;;= Ve;ji-€j; and oj;=oji-oj;. For
procedure, the Taylor series is obtained at the center of methane, the UFF force field and QEq method were used to
parent cell from distant cells @ee Fig. L Then, it is shifted obtain LJ parameters and charges. The optimal results for
to the center of each child cell by multiplying the distancebutyl systems are given in Table IV. Results show that the
between the centers of the parent cell and its child[cele  level of CMM (or average atom occupandg a key param-
Eq. (4)]. Starting at the level-1 cells and recursively repeat-eter in determining computational time and accuracy. The
ing this procedure, we can compute the Taylor coefficient®optimal value for average atom occupancy in the leaf cell is
&0 for all the cells at all levels. The complex downward
expands the Taylor series only on@® the center of the
parent cell instead of eight tim&s each child cejlin the  TABLE Il. Energy decompositions for van der Waals and Coulombic inter-
simple downward. It can be seen in Table | that at level 31actions at each level for 1664 water molecules in the bulk from our CMM3D
computational time is improved by 29% while accuracy re-P°9"@™

mains similar. At level 2, there is no apparent difference in van der Waals sum  Electrostatic sum
CPU time and accuracy between the simple and complex | (kcal/mo)) (kcal/mol)
downward algorithms since there are a large number of neal2”'®

expansion Level n  Dispersion Repulsion CMM RCMM

field interactions involved. The current program will signifi-

cantly speed up if data structur@sg., indexes for each atom Simple 1 624 -878265 7004.30 —10478.83 —836.95
and each cellare optimized. ~ simple 2 78 —8780.57 7004.30 —10458.59 —836.95

We also have studied dendrimers, water—methane binargomplex 2 78  —8780.46 7004.30 —10467.02 —836.95
mixtures, as ngl as Water—methane—dendrlmer ternary MiX5;mole 3 0.8 —876293 700372 —10435.88 —836.95
tures with various compositions. The PAMAM dendrimer compiex 3 08 -8761.93 7003.72 —10444.84 —836.95

has an ammonia core and¢ CH,CH,CONHCH,CH,NH,
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TABLE lll. Energy from near- and far-field contributions for van der Waals and Coulombic interactions on each level for 1664 water molecules in the bulk
from our CMM3D program.

van der Waals van der Waals

dispersion repulsion Coulomb

(kcal/mo) (kcal/mol) (kcal/mo)
Taylor
expansion Level n Near Far Near Far Near Far RCMM
Simple 1 624 —8779.39 —3.26 7004.30 1.28E-6 —11660.39 1181.56 —836.95
Simple 2 78 —8751.16 —29.41 7004.30 6.58E-4 —12067.06 1600.04 —836.95
Complex 2 78 —8751.16 —29.30 7004.30 6.58E-4 —12067.06 1600.04 —836.95
Simple 3 9.8 —8523.16 —239.77 7003.38 0.34 —8430.35 —2005.53 —836.95
Complex 3 9.8 —8523.16 —238.77 7003.38 0.34 —8430.35 —2014.48 —826.95

3-10 atoms. Under the optimal condition, the complexdownwith an appropriate vacuum space in théirection repro-

ward algorithm was preferred since it is generally faster thamduced EW2D results with an energy error of less than 1%,
the simple downward method with similar accuracy. Energybut it is still quite time consuming. Since the EW3D as ap-
error is about 0.05%, while the RMS force error is 0.27%.plied to quasi-2D is our reference and its error in energy as
The RMS force error in polymer systems is much smallercompared to strict EW2D is within 1%, a comparison be-

than that in those systems containing water or methane. ltween our CMM2D and this reference is not as strict as in 3D
CMM, atoms in the same watéor methang molecule may  systems.

be divided into different cells. In this case, nonbonded inter- A shown in Table V, computational time decreases dra-
actions between water molecules are changed from dipolematically as the level increaseshb>1000. For example, for
dipole interactions to charge—dipole or charge— charge intery G.5 dendrimer having 1678 atoms, as compared with level
actions. Thus, accuracy will be significantly improved if the 1 computational time decreases by 4.0 and 6.6 times at lev-
atom in the same group whose total charge is Zerg., @ |5 2 and 3, respectively. For a G-6 dendrimer having 3406
whole water molecule or each residue in a protean be  4ioms, computational time decreases by 4.8 and 8.6 times at
assigned to the same cell as the deepest level. levels 2 and 3, respectively. Thus, the larger the system is,
the more computationally efficient the CMM method is. For
large systems computational time is approximately linear
In this work, the EW3D as applied to quasi-2D systemswith the number of atoms. At level 1, since there are a large
was used to check CMM2D results. Figure 2 shows thahumber of atoms in leaf cells, the near-field interactions
potential energy and RMS force in dendrimer systems condominate overall computations. Thus, computational time
verge within a certain range of vacuum height in #direc-  depends quadraticallyN®) on the number of atoms. The
tion using the EW3D techniqu@:?! According to SpoHt  final optimal results for pure componeritgater or dendrim-
and Jorge and Seatdhthe conventional EW3D technique ers, water—methane binary mixtures, and water—methane—

B. MD simulations of confined systems

TABLE IV. CPU time, RMS force, and relative energy error for bulk systems with the optimal paramatet using the complex downward algorithm

CMM M.I.
Energy RMS Time Energy RMS Time
N2 Level n° (%) (%) (s 6) (%) (9
Pure
Water 4992 3 9.8 0.04 0.520 17 4.75 12.54 48
dendrimer 382 2 6 0.003 0.054 1 191 0.07 1
814 2 13 0.08 0.080 2 1.14 0.06 1
1678 3 3.3 0.05 0.017 6 0.28 0.08 4
3406 3 7 0.04 0.020 28 0.53 0.08 19
Binary mixtures
water—methane 462 2 7.2 0.04 0.192 1 1.13 6.51 1
609 2 9.5 0.05 0.583 1 2.84 8.46 1
1848 3 3.6 0.07 0.630 5 0.85 1.66 6
3440 3 6.7 0.04 0.514 12 1.65 2.23 26
Ternary mixtures
dendrimer—water 422 2 6.6 0.08 0.0001 1 1.84 1.14 1
methane
891 2 14 0.06 0.35 2 1.43 0.64 1

aumber of atoms in the simulation.
PAverage number of atomsin the leaf cell.
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dendrimer ternary systems listed in Table VI, in which thegram. The difference in energ&E between two different
optimal level(or average atom occupancgnd the complex configurations was calculated at each level for each GCMC
downward algorithm are shown. Comparing the accuracy ofmove. Results in Table VII show that potential energies cal-
CMM with that of the Ewald summation, the error in poten- culated from our CMM-GCMC program for various GCMC
tial energy at levels 2 and 3 is comparable and is less thamoves are consistent with those from our CMM-MD pro-
0.32% for various systems. The RMS force error is abougram. The slight difference among different levels for each
0.04% for dendrimer systems and 0.65% for water or methmove is due to approximations used in the calculation of
ane systems. In general, CMM is faster than the Ml methodar-field contributions.
when the system contains more than 1000 atoms and is much
more a_ccurate. The optimal value for average atom 0CCU3, ~ONCLUSIONS
pancy is 3—-10 atoms at the deepest level. The complex
downward algorithm is generally faster than the simple one  The CMM method is efficient in calculating both van der
with similar accuracy. Waals and Coulombic interactions with significantly low
computational time and good accuracy. It is well suited to
handling large systems with long-range interactions in mo-
lecular simulations. Simulation results show that the level of
A system with a dimension of 46.7°859.6 Ax57.3 A the cell hierarchical treéor average atom occupandy the
was tested for a binary mixture of a G-5 PAMAM dendrimer deepest cell is a key factor in determining computational
and water in a confined system using our CMM-GCMC pro-time and accuracy. The optimal number of atoms in the deep-

C. GCMC simulations of confined systems
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TABLE V. Computation of energy and CPU time for one G-3, G-4, G-5, or G-6 PAMAM dendrimer in the confined system from the Ewald sum and our
CMM2D program.

Taylor Energy RMS Time
N Method expansion Level M n (kcal/mol) (kcal/mol A) (9
382 Ewald (—91.083 (3.9658
M.I. —0.935 0.0040 1
CMM Simple 8 48 —1.803 0.0020 1
CMM Simple —1.935 0.0015 1
64 6
CMM Complex —0.067 0.0004 1
CMM Simple 0.406 0.0008 5
512 0.7
CMM Complex -1.719 0.0026 4
814 Ewald (—=729.052 (4.179)
M.I. —3.831 0.0035 1
CMM Simple 8 102 —3.754 0.0024 4
CMM Simple —3.748 0.0023 1
64 12.7
CMM Complex —1.652 0.0024 1
CMM Simple 6.859 0.0103 5
512 1.6
CMM Complex 5.558 0.0103 4
1678 Ewald (—649.122 (4.0721
M.I. -6.122 0.0035 4
CMM Simple 8 210 —2.420 0.0012 32
CMM Simple 7.393 0.0052 9
2 64 26
CMM Complex 7.630 0.0059 8
CMM Simple 5.113 0.0007 6
3 512 33
CMM Complex 6.008 0.0007 4
3406 Ewald (—1459.610 (3.9765
M.I. -9.872 0.0002 17
CMM Simple 1 8 428 5.916 0.0019 172
CMM Simple —768 0.0014 36
2 64 63
CMM Complex —3.474 0.0014 36
CMM Simple —8.607 0.0008 21
3 512 6.7
CMM Complex -1.152 0.0005 19

TABLE VI. CPU time and percentage error in potential energy with an optimum level and using the complex downward algorithm(featener PAMAM
dendrimetey, binary mixture(water and methaneand ternary mixturéwater, methane, and dendrimén the confined system from our CMM2D program.

CMM M.1.
Energy RMS Time Energy RMS Time
N2 Level n° (%) (%) (9 6 (%) (9
Pure
Water 4992 3 9.8 0.21 0.04 12 0.89 0.08 42
dendrimer 382 2 6 0.07 0.01 1 1.03 0.10 1
814 2 13 0.22 0.06 1 0.53 0.08 1
1678 3 3.3 0.92 0.08 4 0.94 0.09 4
3406 3 7 0.08 0.01 19 0.67 0.005 17
Binary mixtures
water—methane 462 2 7.2 0.22 1.32 1 211 8.32 1
609 2 9.5 0.44 .82 1 2.53 5.94 1
1848 3 3.6 0.15 0.89 3 0.20 1.62 5
3440 3 6.7 0.12 0.58 8 0.29 1.32 24
Ternary mixtures
dendrimer—water methane 422 2 6.6 0.86 0.81 1 3.74 151 1
891 2 14 0.28 0.09 1 1.21 0.10 1
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TABLE VII. A comparison of potential energy from our CMM-MD and CMM-GCMC programs.

CMM-MD CMM-GCMC
Old New AE AE
Add (kcal/mol (kcal/mol) (kcal/mol (kcal/mo)
Level 1 Simple 242.18 242.108 —0.072 —0.068
Level 2 Simple 232.783 232.791 0.008 0.004
Complex 231.28 231.293 0.013 0.017
Level 3 Simple 233.733 233.717 —0.016 —0.025
Complex 232.683 232.712 0.029 0.033
CMM-MD CMM-GCMC
old New AE AE
Delete (kcal/mo) (kcal/mo) (kcal/mol (kcal/mo)
Level 1 Simple 242.108 242.181 0.072 0.074
Level 2 Simple 232.791 232.783 —0.008 0.0003
Complex 231.293 231.28 —0.013 —-0.012
Level 3 Simple 233.717 233.733 0.016 0.029
Complex 232.712 232.683 —0.029 —0.028
CMM-MD CMM-GCMC
Old New AE AE
Move (kcal/mol (kcal/mo) (kcal/mo) (kcal/mo)
Level 1 Simple 242.1079 242.4757 0.368 0.364
Level 2 Simple 232.7917 233.2285 0.437 0.433
Complex 231.2931 231.7315 0.438 0.435
Level 3 Simple 233.7171 234.1922 0.475 0.455
Complex 232.7122 233.211 0.499 0.495
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